Антипролиферативное действие

Антипролиферативное средство

Изобретение относится к фармацевтической промышленности, в частности к средству природного происхождения, обладающему антипролиферативной активностью. Средство, обладающее антипролиферативной активностью, представляющее собой белковый экстракт Toxocara canis, полученный путем экстрагирования гомогентата гельминтов Т. Canis фосфатно-солевым буферным раствором с рН 7,2 в соотношении 1:10 в течение 36-48 ч при температуре 4°С, центрифугирования. Вышеописанное средство обладает выраженной антипролиферативной активностью. 1 з.п. ф-лы, 1 табл.,2 пр.

Изобретение относится к области медицины и ветеринарии, в частности к новому средству природного происхождения, оказывающему антипролиферативное действие.

Современная медицина располагает достаточно обширным арсеналом лекарственных препаратов для химиотерапии опухолей. В основном химиотерапевтические средства представлены группами алкилирующих антинеопластических препаратов, антиметаболитов, противоопухолевых антибиотиков, противоопухолевых гормональных препаратов, иммуномодуляторов и некоторых других с иным механизмом действия. Большинство указанных противоопухолевых препаратов очень токсичны, и поэтому схемы и продолжительность химиотерапии выбирают с учетом проявления побочных эффектов, что отражается на эффективности лечения в целом.

Известны природные противоопухолевые препараты растительного происхождения (алкалоиды барвинка розового (винбластин, винкристин); алкалоиды тисового дерева (таксаны) (паклитаксел, доцетаксел); подофиллотоксины, выделяемые из подофилла щитовидного (этопозид, тенипозид) и алкалоиды безвременника великолепного (демекольцин (колхамин), колхицин)) и бактериального происхождения (рубромицин и др.), которые имеют ограниченное применение также из-за высокой токсичности и узкого терапевтического спектра действия (лечение некоторых разновидностей опухолей, преимущественно с экзофитным ростом).

Следовательно, существует необходимость в новых, высокоэффективных противоопухолевых препаратах природного происхождения, которые имели бы широкий спектр действия и были бы менее токсичными.

Гельминты — общее название паразитических червей, обитающих в организме человека, других животных и растений, вызывающих гельминтозы.

К гельминтам относят представителей ленточных червей, или цестод, сосальщиков, или трематод (обе эти группы относятся к плоским червям) и круглых червей, или нематод.

К числу последних относятся токсокары (в частности, Toxocara canis). Т. canis представляет нематоду, паразитирующую в кишечнике плотоядных, например собак; вызывающую инвазию, известную как токсокароз.

Во время паразитирования гельминты продуцируют и высвобождают различные продукты метаболизма. Секреторно-экскреторные продукты жизнедеятельности гельминтов являются для организма хозяина неестественными веществами в его физиологически процессах.

Известно, что возбудители инвазий могут оказывать модулирующее влияние на течение многих заболеваний самой различной этиологии, в том числе, злокачественных (например, Vasilev S. et al. (2015). В частности, имеются сообщения о том, что заражение мышей нематодой Trichinella spiralis (воспроизведение трихинеллеза) приводит к подавлению роста злокачественных клеток и повышению выживаемости животных после прививки клеток меланомы В-16 в условиях in vivo (Molinari J.A., Ebersole J.L., 1977; Pocock D., Meerovitch E., 1982; Kang Y.L. et al., 2013). Также имеются данные по испытанию продуктов метаболизма Т. spiralis с ингибирующим эффектом в отношении роста и выживаемости опухолевых клеток в условиях in vitro (Vasilev S. et al., 2015; Wang X.L. et al., 2009; Wang X.L. et al., 2013).

Исследования по оценке противоопухолевой активности Т. canis или продуктов метаболизма этих гельминтов ранее не проводились.

Целью изобретения является получение белковых экстрактов из тканей Т. canis, оценка их антипролиферативного действия на моделях опухолевых клеток различных линий и обеспечение их возможного применения в дальнейшем в качестве эффективного противоопухолевого средства.

Сущность изобретения заключается в том, что средство, обладающее антипролиферативной активностью, представляет белковый экстракт гельминтов, в частности экстракт Toxocara canis. Необходимо отметить, что условия получения экстракта из гомогената гельминтов, в том числе, Т. canis, зависят от используемого биологического материала, и существенными признаками получения белковых экстрактов является экстракция фосфатно-солевым буфером с рН=7,2.

Экстракт оказывает выраженное антипролиферативное и цитостатическое действие на моделях опухолевых клеток человека in vitro. Как уже указывалось выше, экстракт токсокар ранее не испытывался на моделях опухолевых клеток человека in vitro.

За счет природного происхождения предлагаемое антипролиферативное средство может быть менее токсичным при наличии высокой противоопухолевой эффективности широкого спектра действия.

Примеры конкретного исполнения

Пример 1. Приготовление белкового экстракта Т. canis.

В качестве средства, предположительно обладающего антипролиферативной активностью, использовали белковый экстракт из половозрелых Т. canis, предварительно очищенный от низкомолекулярных соединений.

Тщательно промытые дистиллированной водой, затем физиологическим раствором свежезамороженные половозрелые гельминты — Toxocara canis подвергали измельчению ножницами, гомогенизации в фарфоровой ступке, помещенной в посуду со льдом. В процессе гомогенизации полученный биоматериал подвергали многократному (3-5 раз) замораживанию и оттаиванию с одновременным растиранием для полного разрушения структуры сырья с целью получения однородной гомогенной массы. В качестве экстрагента белков из полученного гомогената Т. canis использовали фосфатно-солевой буферный раствор pH 7,2, который готовили по прописи (натрий хлористый — 8,5 г; двузамещенный фосфорнокислый натрий — 1,15 г; однозамещенный фосфорно-кислый калий — 0,2 г в 1 л дистиллированной воды) в соотношении 1:10. Экстрагирование проводили в условиях холодильной камеры при +4°C в течение 48 ч при постоянном перемешивании на магнитной мешалке. По истечении времени экстрагирования полученный биоматериал центрифугировали при 15000 об/мин в течение 20 мин в центрифуге с охлаждением Optima TLX (настольная центрифуга, контролируемая микропроцессором Becman Coulter Herneshal, S.A.). Полученный после центрифугирования белковый экстракт из Т. canis освобождали от низкомолекулярных белков путем диализа против фосфатно-солевого буферного раствора, разбавленного дистиллированной водой в соотношении 1:10.

Полученный белковый экстракт хранили при -20°С. Методом электрофореза в полиакриламидном геле определили, что белковый экстракт из Т. canis содержит более 20 белковый фракций различной электрофоретической подвижности и молекулярной массы.

Пример 2. Оценка влияния белкового экстракта Т. canis на культуры опухолевых клеток молочной железы человека (MCF-7) и ободочной кишки человека (Сасо-2) в зависимости от концентрации экстракта.

Целью настоящего опыта была оценка влияния белкового экстракта Т. canis на пролиферацию опухолевых клеток человека двух линий.

Материалы и методы

Клетки-мишени. В работе были использованы две эпителиальные клеточные линии: MCF-7 (аденокарцинома молочной железы человека) и Сасо-2 (аденокарцинома ободочной кишки человека). Клетки, вне периода постановки эксперимента, хранили в жидком азоте. Перед проведением исследований ампулы с клетками размораживали и культивировали по стандартной методике в культуральных флаконах (CORNING, Flask, 25 cm2, США) в ростовой среде DMEM GlutaMAX (Gibco) с добавлением 10% FBS и антибиотика/антимикотика (Gibco, ×100) в условиях повышенной влажности СО2-инкубатора (New Brunswick, Galaxy 170R) при Т=37°C в атмосфере 5% CO2.

Исследуемый белковый экстракт. Исследуемый белковый экстракт Т. canis (приготовление смотри в примере 1) представляет экстракт в фосфатно-солевом буфере, не стерильный. Концентрация белка в стоковом растворе составляла 10,9 мг/мл. До проведения исследований раствор хранился при температуре -70°C.

Описание исследования

Перед работой пробирку с белковым экстрактом размораживали при комнатной температуре. В эксперименте in vitro белковый экстракт испытывали в следующих концентрациях по белку: 12,5, 25, 50, 100, 250, 500, 1 и 2 мг/мл. Для приготовления разведений использовали ростовую среду DMEM GlutaMAX (DGIBCO) с 2% FBS и антибиотиком.

Перед проведением опыта готовили рабочий раствор с концентрацией 2 мг/мл, после его стерилизации через миллипоровый фильт-насадку (0,22 μ) были приготовлены разведения экстракта Т. canis: 1, 500, 250, 100, 50, 25 и 12,5 мкг/мл с использованием ростовой среды DMEM GlutaMAX (DGIBCO) с 2% FBS и антибиотиком.

Для проведения эксперимента клетки MCF-7 и Сасо-2 инкубировали по стандартной методике до получения субконфлуэнтного монослоя. В стадии активного роста клеточный монослой диспергировали раствором трипсин/версена, полученные клетки ресуспендировали в ростовой среде DMEM GlutaMAX (Gibco) с 10% FBS и антибиотиком стандартной концентрации. Свежеприготовленную суспензию клеток высевали в 24-луночные планшеты (SARSTEDT, Германия) по 35×103 клеток в лунку для клеток MCF-7 и по 30×103 клеток в лунку для клеток Сасо-2. После чего планшеты ставили в СО2-инкубатор на 3 ч до полного распластывания клеток. Затем из лунок удаляли среду с не прикрепившимися клетками и в опытные лунки вносили ростовую среду с исследуемыми концентрациями вещества (в 4 повторах на каждую исследуемую концентрацию). В качестве контроля оставили четыре лунки с клетками, которые культивировали в полной ростовой среде с 2% FBS без исследуемого вещества. Конечный объем ростовой среды в контрольных и опытных группах по 500 мкл на лунку.

В ходе эксперимента проводили ежедневное светооптическое наблюдение за клетками с использованием инвертированного микроскопа Olympus CK 40 (Japan), оценивая наличие или отсутствие изменений морфологии клеток в опытных лунках по сравнению с контролем. Пролиферативный ответ опухолевых клеток на действие исследуемого экстракта Т. canis оценивали по плотности и жизнеспособности сформированного монослоя после 96-часовой инкубации клеток в присутствии исследуемого экстракта.

Жизнеспособность клеток определяли, используя стандартную процедуру подсчета клеток в камере Горяева с предварительным окрашиванием клеточной суспензии раствором трипанового синего. Для этого монослой диспергировали раствором трипсин/версена, клетки ресуспендировали в ростовой среде и готовую клеточную суспензию красили 0,4% раствором Trypan Blue (SIGMA). После этого клетки считали в камере Горяева. Для этого в каждой лунке подсчитывали общее (тотальное) количество клеток и количество окрашенных (нежизнеспособных) клеток.

% жизнеспособных клеток (Nж) рассчитывали по формуле

Nж=×100%,

где Nт — тотальное (общее) количество клеток в лунке;

Nо — количество окрашенных (нежизнеспособных) клеток в лунке.

Влияние исследуемого экстракта Т. canis на пролиферативную активность опухолевых клеток MCF-7 и Сасо-2 оценивали через 96 ч, сравнивая общее количество клеток в опытных лунках относительно контроля.

Результаты

В ходе эксперимента по оценке влияния исследуемого экстракта Т. canis в указанных концентрациях на эпителиальные культуры опухолевых клеток молочной железы человека (MCF-7) и ободочной кишки человека (Сасо-2) проводили ежедневный визуальный контроль за характером роста и морфологией растущих колоний клеток. Через 24 и 48 ч во всех опытных лунках с клетками MCF-7 и Сасо-2 плотность колоний сопоставима с контролем. Морфологических изменений не обнаружено. Детрит полностью отсутствовал.

Через 72 ч в клетках MCF-7 и Сасо-2 при концентрации 2 мг/мл наблюдали заметное отставание в росте. Отмечено, что в опытных лунках при 2 мг/мл размер колоний был меньше, чем в контрольной группе; также в поле зрения заметно снизилось количество митотически делящихся клеток, при этом морфологических изменений не отмечено. В лунках с клетками MCF-7 и Сасо-2 при 1 и 500 мкг/мл наблюдали незначительное отставание в росте по сравнению с контролем. В опытных лунках с концентрацией 12,5, 25, 50 и 250 мкг/мл отличий в сравнении с контрольной группой К не обнаружено.

Через 96 ч культивирования в клетках MCF-7 и Сасо-2 при концентрациях 2, 1 и 500 мкг/мл в поле зрения наблюдали значительно меньше пролиферирующих колоний, с меньшим количеством клеток, в сравнении с колониями клеток контрольной группы. Морфологические изменения отмечены в клетках MCF-7 только при максимальной концентрации 2 мг/мл. В этой опытной группе видны отдельные колонии, в которых наблюдали клетки без четких и ярко выраженных контуров с потерей характерного рисунка. Количество митотически делящихся клеток в поле зрения снижено. При этом детрит в среде отсутствовал.

После завершения эксперимента, через 96 ч, клетки трипсинизировали, полученную клеточную суспензию красили 0,4% раствором трипановым синим и количество клеток подсчитали в камере Горяева. Результаты подсчета клеток представлены в таблице 1.

Из данных, представленных в таблице 1, следует, что исследуемый экстракт Т. canis не оказывал существенного влияния на количество жизнеспособных клеток Сасо-2 через 96 ч инкубации. Так, при концентрациях 2, 1 и 500 мкг/мл количество жизнеспособных клеток ободочной кишки человека составляело 90,0, 88,5 и 88%, что сопоставимо с контрольной группой клеток, где жизнеспособность равна 96%. В тоже время, при этих же значениях концентрации наблюдалось значительное снижение тотального количества клеток в сравнении с контрольной группой. Так, общее количество клеток Сасо-2 в контрольной группе через 96 ч культивирования составляло 116,7×103 кл/лунку, а при 500, 1 и 2 мг/мл были значения 72,0×103, 63,3×103 и 65,9×103 кл/лунке соответственно. При концентрациях экстракта от 12,5 до 250 мкг/мл общее количество клеток сопоставимо с контрольной группой и колебалось от 94,0×103 до 106,0×103 кл/лунку. Исходя из этого можно заключить, что высокие концентрации экстракта Т. canis от 500 до 2 мг/мл ингибируют пролиферативную активность опухолевых клеток Сасо-2.

При сравнении полученных результатов (таблица 1) по влиянию экстракта Т. canis на культуру опухолевых клеток молочной железы человека и ободочной кишки человека можно предположить, что клетки MCF-7 более чувствительны к негативному действию исследуемого вещества. Так, из данных таблицы 1 следует, что количество жизнеспособных клеток MCF-7 постепенно снижалось с 95,2% при минимальной дозе от 12,5 до 79,5% при максимальном значении 2 мг/мл, по сравнению с контрольным значением 96,8%. Незначительное ингибирующее действие исследуемого экстракта на пролиферативную активность клеток MCF-7 проявлялась при уже в концентрации 50 мкг/мл, где общее количество клеток составляло 151,9×103 кл/лунке, в сравнении с контрольным значением 181,3×103 кл/лунке. С увеличением концентрации от 100 мкг/мл и выше ингибирующее действие экстракта усиливалось пропорционально концентрации и достигало максимальных значений при 2 мг/мл, где тотальное количество клеток снизилось в три раза по сравнению с контролем и составляло 60,0×103 кл/лунку.

На основании результатов, полученных в данной работе, можно заключить следующее.

1. Исследуемый экстракт Т. canis обладает выраженным антипролиферативным действием на клетки MCF-7 в концентрациях 100, 250, 500, 1 и 2 мг/мл, которое проявляется к 96 ч инкубации.

2. Влияние экстракта на клетки MCF-7 носит дозозависимый характер.

3. Ингибирующее действие экстракта Т. canis на пролиферативную активность культуры клеток Сасо-2 проявляется в меньшей степени и в более высоких концентрациях 500, 1 и 2 мг/мл.

4. Культура клеток MCF-7 обладает более высокой чувствительностью к антипролиферативному действию экстракта Т. canis по сравнению с клетками Сасо-2 в модели in vitro через 96 ч культивирования.

Литература

5. Wang X.L., Fu B.Q., Yang S.J. et al. Trichinella spiralis — a potential antitumor agent // Vet. Parasitol. — 2009. — V. 159(3-4). — P. 249-252.

1. Средство, обладающее антипролиферативной активностью, представляющее собой белковый экстракт Toxocara canis, полученный путем экстрагирования гомогентата гельминтов Т. Canis фосфатно-солевым буферным раствором с рН 7,2 в соотношении 1:10 в течение 36-48 ч при температуре 4°С, и центрифугирования.

2.Средство по п.1, отличающееся тем, что оно обладает антипролиферативной активностью на моделях опухолевых клеток человека in vitro.

Вход в личный кабинет

А.Н. Моисеев, канд. вет. наук, ООО «БИОТЕХ-ФАРМ», г. Санкт-Петербург

П.И. Барышников, д-р вет. наук, профессор, Алтайский АГАУ, г. Барнаул

В семейство цитокинов входят интерфероны (далее — IFN), интерлейкины, хемокины, ростовые и колониестимулирующие факторы, представляющие собой сигнальные полипептидные молекулы иммунной системы. Обладая широким спектром биологической активности, они определяют не только адекватный уровень иммунного ответа, но и регулируют взаимодействия главных интегративных систем организма — нервной, иммунной и эндокринной.

Структура и механизм действия большинства цитокинов охарактеризованы достаточно полно. Благодаря использованию методов генной инженерии и современной биотехнологии многие цитокины в настоящее время производятся в виде рекомбинантных препаратов, идентичных эндогенным молекулам, в количестве достаточном для их клинического применения.

Многие микроорганизмы — бактерии, дрожжи, вирусы — используются в качестве реципиентов чужеродного генетического материала с целью получения рекомбинантных штаммов — продуцентов биотехнологической продукции. Так получены рекомбинантные штаммы Е. coli, продуцирующие интерфероны, инсулин, гормоны роста, разнообразные антигены; штаммы В. subtilis, вырабатывающие интерферон; дрожжи, продуцирующие интерлейкины и др.

Использование рекомбинантных цитокинов, обеспечивающих адекватную и целенаправленную медикаментозную коррекцию иммунных дисфункций, повышает эффективность иммунотерапии и лечения в целом. Вводимые в организм цитокины восполняют дефицит эндогенных регуляторных молекул и полностью воспроизводят их эффекты. Это особенно важно в условиях тяжелой или хронической патологии, когда применение традиционных иммуномодуляторов или индукторов синтеза цитокинов бесполезно из-за истощения компенсаторных возможностей иммунной системы. В настоящее время терапия рекомбинантными цитокинами является одним из наиболее перспективных и постоянно расширяющихся направлений иммунофармакологии.

Так, противовирусное и антипролиферативное действие оказывают интерфероны первого типа (далее — IFN-α, IFN-β). Особое место в свете современных представлений о молекулярных механизмах иммунных реакций принадлежит интерферону гамма (далее — IFN-γ) — регуляторному цитокину иммунного ответа.

На основе рекомбинантных интерферонов различными компаниями разработаны лекарственные препараты для животных и человека, которые применяются для лечения и профилактики инфекционных заболеваний, в первую очередь вирусной этиологии.

Рекомбинантные IFN в организме животных и человека при терапии и профилактике заболеваний различной этиологии обеспечивают адекватную и целенаправленную медикаментозную коррекцию иммунных дисфункций, восполняя дефицит эндогенных регуляторных молекул и полностью воспроизводят их эффекты. Высокая иммунокорригирующая эффективность, прогнозируемость и селективность их действия обусловлены наличием на клетках специфических рецепторов и существованием природных механизмов их элиминации. Лекарственные препараты на основе рекомбинантных IFN являются мощными средствами патогенетической иммуноориентированной терапии и обладают как прямым замещающим действием, так и оказывают различные индуктивные эффекты. В настоящее время они находят широкое применение в лечении инфекционных, онкологических и некоторых других заболеваний животных.

Классификация интерферонов

Интерфероны (IFN, ИФН) — общее название, под которым в настоящее время объединяют ряд биологически активных белков или гликопротеидов со сходными свойствами, синтезируемых клетками организма в процессе защитной реакции в ответ на вторжение чужеродных агентов — вирусную инфекцию или антигенное воздействие. Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу.

Интерфероны — мультигенное семейство индуцибельных цитокинов, обладающих разнообразными функциями, включая противовирусную, антипролиферативную, противоопухолевую и иммуномодулирующую.

В настоящее время известно более 20 IFN, различающихся по структуре, биологическим свойствам и преобладающему механизму действия. IFN подразделяют на три типа:

• Тип I, известный как вирусный интерферон, включает IFN-α (лейкоцитарный, синтезируется активированными моноцитами и В-лимфоцитами), IFN-β (фибробластный, синтезируется фибробластами, эпителиальными клетками и макрофагами) и другие IFN. Первому типу (IFN-α, IFN-β) главным образом присущи антивирусный и антипролиферативный эффекты, в меньшей степени — иммуномодулирующий. Они вырабатываются непосредственно после встречи с патогеном — индуцируются в процессе вирусной инфекции, их действие направлено на локализацию возбудителя и предотвращение его распространения в организме. Индукторами IFN-α и -β являются вирусы, РНК (особенно двунитевая), липополисахариды (LPS), компоненты некоторых бактерий. Среди вирусов наиболее сильными индукторами интерферонов являются РНК-геномные. ДНК-содержащие вирусы — слабые индукторы (за исключением поксвирусов).

• Тип II, известный как иммунный, включает IFN-γ (синтезируется активированными Т-лимфоцитами и NK-клетками). Главное действие интерферонов второго типа (IFN-γ) — участие в реакциях иммунитета. Он начинает вырабатываться на последующих этапах инфекционного процесса уже сенсибилизированными Т-лимфоцитами и активно участвует в каскаде специфического иммунного ответа. Индуцировать выработку IFN-γ способны интерфероногенные вещества, антигены, Т-митогены и некоторые цитокины. Клетками-мишенями для действия IFN-γ являются макрофаги, нейтрофилы, естественные киллерные клетки, цитотоксические Т-лимфоциты, имеющие на своей поверхности рецепторы к IFN-γ Продукция IFN-γ находится под контролем цитокинов. IL-12 и IL-18 усиливают его экспрессию, а IL-2 способствует реализации функции CD4+ лимфоцитов, активируя выработку IFN-γ. Фоновое количество IFN-γ всегда есть в организме, даже если нет инфекции: например, анализ на интерфероновый статус показывает у здоровых людей и животных всегда определяемое количество IFN в крови, при стимуляции или инфекции оно многократно возрастает. Однако при герпесвирусной инфекции и на последних стадиях опухолевого процесса количество IFN-γ стремится к нулю, так как вирус герпеса и раковые клетки продуцируют белки, блокирующие синтез IFN-γ. Поэтому при герпесвирусной инфекции и раке индукторы интерферонов бессмысленны, их нужно вводить в организм извне.

• Тип III был обнаружен позже типа I и типа II; информация о нем свидетельствует о важности IFN типа III в некоторых видах вирусных инфекций.

Вирусные интерфероны (IFN-α/β) индуцируются в процессе вирусной инфекции, а синтез интерферонов II типа (IFN-γ) индуцируется митогенными или антигенными стимулами. Большинство типов вирусоинфицированных клеток способно синтезировать IFN-α/β в клеточной культуре. В противоположность этому IFN-γ синтезируется только некоторыми клетками иммунной системы, включая естественные киллерные (NK) клетки, CD4 Т-клетки и CDS цитотоксические супрессорные клетки.

Противовирусный эффект интерферонов

Интерфероны не действуют непосредственно на вирус. Под их влиянием клетка становится резистентной к инфекции. Интерфероны являются первой линией защиты от вирусной инфекции, поскольку начинают вырабатываться сразу же после контакта с вирусом. При этом выраженность ответа прямо пропорциональна заражающей дозе.

Некоторые вирусы способны блокировать противовирусное действие IFN. Так, например, аденовирусы продуцируют специфическую РНК, которая предотвращает активацию протеинкиназы.

Cвязывание IFN с рецептором индуцирует в клетке три одновременно протекающих процесса, которые заканчиваются:

• активацией латентной эндорибонуклеазы, приводящей к разрушению вирусной РНК;

• подавлением синтеза вирусной матричной РНК;

• подавлением синтеза белков вирусной оболочки.

Эти механизмы интегрально реализуют противовирусный эффект, приводя к подавлению репликации вируса.

Иммуномодулирующее действие интерферонов

IFN обладают не только противовирусным, но и иммуномодулирующим действием за счет влияния на экспрессию рецепторов главного комплекса гистосовместимости (МНС). IFN увеличивают экспрессию молекул 1-го класса МНС на всех видах клеток, тем самым улучшая распознавание инфицированных клеток цитотоксическими Т-лимфоцитами (CTL). Кроме того, IFN-γ усиливает экспрессию молекул 2-го класса МНС на антигенпрезентирующих клетках, в результате чего улучшается презентация вирусных антигенов CD4+ лимфоцитам и активируются натуральные киллеры (NK-клетки). IFN также стимулируют фагоцитоз.

Регуляция иммунного ответа цитокинами, в том числе интерферонами, происходит по эстафетному принципу, воздействие цитокина на клетку вызывает образование ею других цитокинов (цитокиновый каскад).

Антипролиферативный эффект интерферонов

Антипролиферативный эффект IFN объясняется следующими механизмами:

• активацией цитотоксических клеток;

• усилением экспрессии опухольассоциированных антигенов;

• модуляцией продукции антител;

• ингибицией действия опухолевых ростовых факторов;

• ингибицией синтеза РНК и белков опухолевой клетки;

• замедлением клеточного цикла с переходом в фазу покоя;

• стимуляцией опухолевых клеток к созреванию;

• восстановлением сдерживающего контроля за пролиферацией;

• торможением образования новых сосудов в опухоли;

• ингибицией метастазирования;

• биомодуляцией активности цитостатиков: изменением метаболизма и снижением клиренса;

• преодолением лекарственной резистентности за счет ингибиции генов множественной лекарственной резистентности.

Антибактериальный эффект интерферонов

В последние годы показано, что IFN обладают также антибактериальным эффектом, в основе которого лежит способность IFN индуцировать активность некоторых ферментов в пораженной клетке.

Кроме того, антибактериальная роль IFN-γ заключается в активации макрофагов, которые продуцируют провоспалительные цитокины, а также активные формы кислорода и азота, простагландины. Эти факторы способствуют развитию воспалительного процесса, ведущего к гибели бактерий.

Таким образом, все интерфероны представляют собой группу полифункциональных белковых факторов с выраженным противовирусным и противоопухолевым эффектом разной степени. IFN-α обладает самой сильной противовирусной активностью среди всех интерферонов, а IFN-γ имеет более выраженную антипролиферативную активность. Все интерфероны обладают иммунорегуляторным действием разной степени выраженности (максимальной обладает IFN-γ) — повышают активность макрофагов, Т-лимфоцитов и NK-клеток.

Назад в раздел

Интерфероны

Эндогенный IFN-y (рисунок ниже, таблица) был открыт в 1965 году (E.F. Wheelock), представляет собой чувствительный к кислой среде гликопротеин с молекулярной массой 20 000 — 23 000. Гены, кодирующие IFN-y, находятся у чело-века в 12-ой паре хромосом.

Основные продуценты эндогенного IFN-y — естественные киллерные (NK) клетки и Т-лимфоциты. Среди Т-лимфоцитов продуцентами IFN-y являются как цитотоксические CD8+-, так и хелперные CD4+ Т-лимфоциты, однако при дифференцировке на Тх1 и Тх2 способность продуцировать IFN-? имеют только Тх1.

Индуцировать выработку IFN-y способны интерфероногенные вещества, антигены, Т-митогены и некоторые цитокины. Продукция IFN-y находится под контролем цитокинов. IL-12 и IL-18 усиливают его экспрессию, а IL-2 способствует реализации функции CD4+ лимфоцитов, активируя выработку IFN-y.

Синтез IFN-y подавляется IL-4, IL-10, дексаметазоном, циклоспорином А, вирусными белками-супрессорами, раковыми клетками.

Фоновое количество IFN-y всегда есть в организме, даже если нет ин-фекции, например, анализ на интерфероновый статус показывает у здоровых людей и животных всегда определяемое количество IFN в крови, оно при стимуляции или инфекции многократно возрастает. Однако при герпе-свирусной инфекции и на последних стадиях опухолевого процесса, количество IFN-y стремиться к нулю, так как вирус герпеса и раковые клетки продуцируют белки, блокирующие синтез IFN-y. Поэтому при герпесвирус-ной инфекции и раке индукторы интерферонов бессмысленны, их нужно вводить в организм извне.

IFN-y обладает сходным с другими IFN биологическим действием (подавление репликации вирусов, антипролиферативное действие, иммуномодулирующий эффект), но IFN-y теснее связан с системой цитокинов и вносит более существенный вклад в иммунорегуляцию.

Биологическая активность IFN-y реализуется через специфические клеточные рецепторы и внутриклеточный сигнальный протеинкиназный каскад, приводящий к активации соответствующих транскрипционных факторов и транскрипции целого семейства генов, кодирующих факторы резистентности к инфекционным агентам и комплементарные цитокины.

Клетками — мишенями для действия IFN-y являются макрофаги, нейтрофилы, естественные киллерные клетки, цитотоксические Т-лимфоциты, имеющие на своей поверхности рецепторы к IFN-y (рисунок ниже).

Т-лимфоциты и макрофаги. Важнейшей функцией IFN-y является его участие в опосредовании взаимосвязей между лимфоцитами и макрофагами и в регуляции соотношения клеточной и гуморальной составляющих адаптивного иммунного ответа (рис. 1). IFN-y служит стимулятором макрофагов, способствуя проявлению различных функций этих клеток, включая процессинг и презентацию антигенов, выработку цитокинов, генерацию активных форм кислорода и азота. К цитокинам, продукция которых усиливается под влиянием IFN-y, относятся ИЛ-1 и ИЛ-12 (этот цитокин усиливает синтез IFN-y и диффренцировку Т-хелперов в сторону Тх1).

IFN-y повышает экспрессию антигенов МНС I класса, которые играют важную роль в распознавании чужеродных клеток (вирусинфицированные, опухолевые) CD8+ цитотоксическими Т-лимфоцитами и повышает экспрессию антигенов МНС II класса на антигенпредставляющих клетках.

IFN-y снижает секреторную активность Th2, подавляя синтез IgE, IgG(2,4) и IgA. Одновременно IFN-y усиливает развитие Th1-зависимого адаптивного иммунного ответа. IFN-y вместе со своим антагонистом IL-4 поддерживает баланс Th1/Th2.

Цитотоксические Т-лимфоциты и NK-клетки с помощью IFN-y участвуют в реализации цитотоксического эффекта (противоопухолевая и противовирусная активность). При введении в организм IFN-y активность NK-клеток повышается уже через несколько часов.

Моноциты. IFN-y стимулируют экспрессию высокоаффинного рецептора IL-2 (IL-2R) на мембране моноцитов, повышая их восприимчивость к IL-2. В свою очередь IL-2 при воздействии на моноциты стимулирует их способность уничтожать опухолевые клетки и бактерии. В результате стимуляции IFN-y и IL-2 моноциты вырабатывают большое количество биологически активных веществ и медиаторов воспаления: свободные формы кислорода, H2O2, простагландин Е2, тромбоксан В2, TNF-a (фактор некроза опухоли a).

Нейтрофилы. IFN-y повышает активность цитохрома b558 в нейтрофилах (например, при недостаточности фагоцитов — при хронической гранулематозной болезни), что сопровождается активизацией внутриклеточного разрушения бактерий и снижает риск инфекций.

IFN-y активирует продукцию белков острой фазы воспаления, усиливает экспрессию генов С2 и С4 компонентов системы комплемента.

В-лимфоциты. IFN-y ингибирует В-клеточный ответ на IL-4, подавляет продукцию IgE и экспрессию CD23-антигена. Так, при синдроме гиперпродукции IgE и диффузном нейродермите у человека применяется IFN-y, он угнетает синтез IL-4 и IL-5 T-хелперами. IFN-y является индуктором апоптоза дифференцированных В-клеток, дающих начало аутореактивным клонам. Отменяет супрессивный эффект IL-4 на IL-2-зависимую пролиферацию и генерацию лимфокин-активированных киллеров.

Таким образом, играя важную роль в иммунорегуляции, IFN-y является ключевым цитокином клеточного и ингибитором гуморального адаптивного иммунного ответа.

IFN-y имеет решающее значение для врожденного и адаптивного иммунитета против вирусных, бактериальных и некоторых протозойных инфекций.

Противовирусное действие IFN-y заключается в том, что он блокирует репликацию вирусных ДНК и РНК, синтез вирусных белков и сборку зрелых вирусных частиц (схема).

IFN-y влияет на клеточный иммунный ответ, активируя Th1-клетки, NK-клетки, макрофаги, цитотоксические Т-лимфоциты. Он повышает как неспецифическую резистентность, так и антиген-специфический иммунный ответ. При этом IFN-y вызывает цитотоксическое действие на вирус-инфицированные клетки (рис. 3, 4).

Антибактериальное действие IFN-y заключается в его способности индуцировать активность некоторых ферментов в пораженной клетке, что приводит к нарушению метаболизма и разрушению бактериальной клетки. Кроме того, активированные IFN-y цитотоксические Т-лимфоциты и NK-клети реализуют цитотоксический эффект, а активированные макрофаги продуцируют провоспалительные цитокины, активные формы кислорода и азота, простагландины. Эти факторы способствуют развитию воспалительного процесса, ведущего к гибели бактерий.

Антипролиферативный эффект IFN-y заключается в подавлении роста опухолевых клеток за счет подавления синтеза РНК и протеинов, ингибирования опухолевых ростовых факторов, стимулирующих пролиферацию клеток, замедлении клеточного цикла с переходом в фазу «покоя», восстановлении сдерживающего контроля за пролиферацией, а также за счет активации цитотоксических Т-лимфоцитов и NK-клеток, которые участвуют в реализации цитотоксического эффекта.

Таким образом, все интерфероны представляют собой группу полифункциональных белковых факторов с выраженным противовирусным и противоопухолевым эффектом разной степени. IFN-a обладает самой сильной противовирусной активностью среди всех интерферонов, а IFN-y имеет более выраженную антипролиферативную активность. Все интерфероны обладают иммунорегуляторным действием разной степени выраженности (мак-симальной обладает IFN-y) – повышает активность макрофагов, Т-лимфоцитов и NK-клеток.

Пролиферация – это процесс размножения клеток, приумножающий объем тканей. Интенсивно протекает в период эмбрионального развития, когда клетки развивающегося эмбриона активно и непрерывно делятся. Процессом пролиферации управляют гормоны, способные как ускорить её, так и замедлить рост клеток.

Пролиферация, являясь основным процессом, обеспечивающим нормальное развитие и рост тканевых структур, способствует их постоянному обновлению и нормальной работе организма.

Пациенты, увидев в заключении врача после обследования слово «пролиферация», задаются вопросом что это такое, начинают волноваться насколько это опасно, но не стоит паниковать – пролиферация не является заболеванием.

Клеточным структурам многих видов тканей необходимо регулярное обновление. Этот физиологический процесс осуществляется путем деления клеток. Процесс обновления клеток явно выражен в кожном покрове, слизистых оболочках желудочно-кишечного тракта, системы дыхания и матки. Это означает, что пролиферация в них является необходимым и нормальным процессом.

Клеточная пролиферация с медицинской точки зрения

Изучив процесс клеточной пролиферации, врачи выяснили, что она контролирует процесс нормального функционирования защитных сил организма – иммунитета. Пролиферация способствует уничтожению тканевых дефектов и восстановлению прежнего функционирования органов, работа которых была нарушена. Но нельзя назвать пролиферацию полностью безвредным процессом. Она может принимать участие и в патологических процессах, например, при выработке большого количества соматотропного гормона (гормона роста) наблюдается увеличение конечностей и некоторых органов.

Нарушение процесса пролиферации и дифференцировки клеток может сопровождаться атипией (внешнее и функциональное изменение клеток) и дать толчок образованию злокачественных опухолей. Клетки начинают активно размножаться, что называется гиперпролиферация. Так происходит потому, что пролиферация уже не дифференцирующихся клеток приводит к началу опухолевого процесса. Но не следует забывать о том, что в различных органах тканевая пролиферация протекает неодинаково.

Ведущие клиники в Израиле

Ассута

Израиль, Тель-Авив

Обратиться в клинику

Ихилов

Израиль, Тель-Авив

Обратиться в клинику

Хадасса

Израиль, Иерусалим

Обратиться в клинику

В зависимости от индекса пролиферативной активности и способности делиться клетки организма в медицине подразделяются на 3 группы:

  • Лабильные;
  • Стабильные;
  • Статические.

Лабильным клеткам присущи выраженные пролиферативные процессы, вследствие чего они могут регенерировать быстро и восстанавливать свою деятельность.

В процессе регенерации наблюдаются такие процессы как:

  1. Рост соединительной ткани;
  2. Формирование новых сосудов;
  3. Устранение тканевых дефектов.

В эту группу можно включить клетки крови, эпителиальной ткани и эпидермиса, слизистого покрова желудочно-кишечного тракта. Наиболее быстро пролиферация протекает в слизистой желудка.

Стабильным клеткам свойственны умеренные пролиферативные процессы из-за чего способность их к быстрому размножению и восстановлению несколько хуже. Пролиферирующие клетки здесь образуются исключительно в результате серьезных повреждений тканей или органов. Сюда можно отнести печень, поджелудочную железу, поперечно-полосатую мышечную ткань, слюнные железы и др.

К статическим клеткам можно отнести кардиомиоциты и нервные клетки. Они практически не поддаются пролиферации, не способны восстанавливаться и размножаться. Однако, если на кардиомиоциты долгое время действует какое-либо напряжение, они способны восстановиться за счет пролиферирующих внутриклеточных структур внутри здоровых клеток. Это, в конечном счете, может привести к гипертрофии миокарда.

Виды пролиферации

Медицине на сегодняшний день известны следующие виды пролиферации клеток:

  • Физиологическая пролиферация – восстанавливает тканевые и клеточные структуры естественным путем. Сюда можно отнести пролиферацию плоского эпителия ЖКТ и клеток крови;
  • Репаративная — способствует регенерации тканей и клеточных структур при воспалительных процессах после каких-либо повреждений;
  • Патологическая пролиферация клеток – процесс развития атипичных тканей, отличающихся структурой от здоровых. В пример можно привести рубцы в месте ожогов, разрастание соединительных тканей в месте разрыва стенки миокарда, хрящи в месте перелома. Но самым сложным проявлением патологической пролиферации является возникновение раковых опухолей.

Изучение процессов пролиферации имеет немаловажное значение для понимания процесса гомеостаза (поддержания постоянства внутренней среды организма).

Пролиферация эндометрия и шейки матки

Пролиферация в гинекологии – явление нередкое. Деление клеток женских половых органов итак происходит довольно быстро, а при патологиях этот процесс протекает еще активнее. Пролиферация клеток призматического эпителия в половых органах выявляется после гистологического анализа слизистой оболочки матки, шейки матки или ее фрагмента, который забирается путем конизации. По итогам анализа врач-гинеколог делает вывод о наличии или отсутствии патологического процесса.

Рассмотрим подробнее пролиферацию в матке. В разных частях матка имеет неодинаковую структуру и выстилку. Шейку ее выстилает многослойный плоский без атипии эпителий, зону цервикального канала – цилиндрический эпителий, а слизистую эндометрия выстилает железистая ткань.

В течение одного менструального цикла на матку воздействуют гормональные всплески, готовящие ее к возможной беременности, поэтому клетки ее начинают пролиферировать и подготавливать эндометрий для более удобной имплантации оплодотворенной яйцеклетки. Именно поэтому процесс пролиферации не просто нормальный, но еще и необходимый.

У беременной женщины в результате гормональных изменений активная пролиферация железистого эпителия маточной шейки считается нормальным явлением.

Ускоренный пролиферативный процесс может свидетельствовать о следующем:

  • О наличии воспалительного процесса – цервицита;
  • О повреждениях различного рода (выскабливание при абортах, послеродовые разрывы, удаление фрагмента шейки матки);
  • О возможных опухолевых процессах (дисплазия, полипы, рак).

Иными словами, в шейке матки наблюдается воспалительная, гиперпластическая и посттравматическая пролиферация.

Бактериальные, грибковые и вирусные цервициты приводят к повреждениям покровного эпителия, который вследствие этого начинает усиленно пролиферировать для восстановления своей целостности.

Похожие явления наблюдаются при эрозии, повреждении шейки матки при родовых потугах, абортах и прочих манипуляциях. Такая пролиферация, способствующая регенерации многослойной плоской эпителиальной ткани, считается физиологической.

Пролиферация в перечисленных выше ситуациях не приносит вреда, но все же требует лечения под наблюдением врача. При полном восстановлении слизистой оболочки волноваться не о чем.

Пролификация с атипией имеет несколько другой характер. Базальноклеточная гиперплазия может способствовать развитию псевдоэрозий шейки матки, которые при несвоевременном лечении могут преобразоваться в раковую опухоль.

Псевдоэрозия представляет собой явление, когда снаружи шейки матки появляются участки железистого эпителия, который обычно выстилает стенки в цервикальном канале. Это происходит из-за гормонального сбоя, который в свою очередь вызывается вирусными заболеваниями. При псевдоэрозиях может пролиферировать, как плоский эпителий, так и участки цилиндрического, из которого и формируются эрозии.

Опасным явлением выступает пролиферация с дисплазией многоклеточного плоского эпителия шейки матки, так как дисплазия – это предраковый процесс.

Поговорим о пролиферации эндометрия.

Эндометрий представляет собой внутренний слой матки, постоянно обновляющийся и имеющий сложное строение. В период менструации он отторгается из-за не наступившей беременности и образуется вновь до следующего цикла. Этот процесс является постоянным и не обходится без пролиферации. Более активно клетки эндометрия пролиферируют в первую половину менструального цикла, когда слизистая оболочка матки находится под действием гормонов эстрогенов. В случае, когда пролиферация не прекратилась вовремя, возникает гиперплазия эндометрия. Это может повлечь за собой образование кист, полипов, что грозит перерождением их в онкологию.

Получается, процесс пролиферации в матке не всегда является патологией. В некоторых случаях этот процесс жизненно необходим.

Пролиферация клеток в гастроэнтерологии

Обновление клеток железистого эпителия желудка происходит регулярно, так как она нуждается в постоянной пролиферации. Любое повреждение слизистой ускоряет процесс деления клеток. Причинами активной пролиферации обычно выступают язвенная болезнь, гастрит, различные полипы, а также опухоль.

При острой форме гастрита на фоне воспаления, выраженного в виде отечности слизистого покрова и кровоизлияний, выявляются также участки покровно-ямочного эпителия, который пролиферируя, способствует регенерации поврежденной слизистой оболочки.

Хронический гастрит, встречающийся сегодня у людей всех возрастных групп, также протекает с усиленным процессом пролиферации эпителия. Этот процесс особенно проявляется при гиперплазиях, когда утолщается слизистая и возможно возникновение различного рода полипов.

При обострении язвенной болезни наблюдается повреждение стенок органа. Для устранения этого дефекта по краям язвы начинается активная пролиферация слизистого эпителия. Такая пролиферация особенно характерна для гиперпластических полипов, обнаруживаемых по краям язвы.

Наиболее опасной считается предраковая пролиферация желудочной стенки, когда начинает умножаться количество темных вытянутых клеток в зоне шеек желез желудка.

В самом начале процесс несет регенеративный характер, но из-за нарушенной дифференцировки клеток полного восстановления слизистой не наблюдается. Железы в результате покрываются несвойственными ими темными вытянутыми клетками, которые в норме находятся лишь в шейках этих желез. В дальнейшем это приводит к развитию злокачественного образования – карциномы.

Пролиферация молочной железы

Молочные железы часто подвержены различным изменениям. Они регулярно испытывают на себе воздействие половых гормонов, которое проявляется в изменениях груди во время менструации, в период беременности и грудного вскармливания. По этой причине орган подвержен различным патологиям. Согласно статистическим данным около 60% женщин в возрасте 25-35 лет подвержены развитию мастопатии.

Несмотря на то, что мастопатия является доброкачественным процессом, наличие ее повышает риск развития рака груди. Пролиферативное действие здесь еще более опасно. Оно повышает риск развития онкологии в 25 раз. Именно поэтому пролиферуриющая мастопатия называется предраковой.

Не тратьте время на бесполезный поиск неточной цены на лечение рака

Сообщите мне точные цены

* Только при условии получения данных о заболевании пациента, представитель клиники сможет рассчитать точную цену на лечение.

Выделяют 3 степени мастопатии:

  1. При первой степени не наблюдается пролиферации;
  2. При второй имеются признаки пролиферации;
  3. При третьей степени наблюдается выраженная пролиферация атипичных клеток эпителия.

Получается, процесс пролиферации является не только признаком развития мастопатии, но и показателем возможного развития онкологии. Поэтому при наличии каких-либо изменений в груди делается цитограмма для изучения структуры ткани груди.

Пролиферация при воспалениях

Любой воспалительный процесс завершается пролиферацией. Очаговая воспаленная часть ограничивается от нормальных тканей именно за счет пролиферации. Однако, этот процесс может наблюдаться на начальной стадии воспаления фолликулярного эпителия. В этом случае причины пролиферации могут быть разнообразными.

В процессе пролиферации может наблюдаться активное деление различных клеток, а именно:

  • Клеток мезенхимы;
  • Эндотелиальных клеток;
  • В — и Т-лимфоцитов;
  • Клеток адвентиция;
  • Тучных клеток;
  • Макроцитарных клеток.

Рассмотрим пролиферацию в фибробластах. При ней наблюдается активная выработка белков. В дальнейшем фибробласты преобразуются в зрелые клетки, именуемые фиброцитами. На конечном этапе пролиферация приводит к отделению очага воспаления от нормальных тканей с помощью коллагена. Смотря на наличие такой структуры, можно установить диагноз пролиферация.

Что делать при выявлении пролиферации?

Где бы ни был выявлен процесс пролиферации, первое, что сделает квалифицированный специалист – это определит причину, только потом подберет необходимую терапию. Не существует однозначного метода лечения пролиферации, так как она не является самостоятельной патологией, а лишь служит спутником других болезней.

Для лечения пролиферации при воспалительных процессах назначается противовоспалительная терапия, дополняющаяся противовирусными и антибактериальными препаратами, оказывающими антипролиферативное действие.

Предраковый пролиферат с атипией на фоне фовеолярной дисплазии требует более серьезных мер лечения вплоть до удаления пораженной части органа или ткани. Пролиферация, протекающая на фоне карциномы, требует лечения по правилам онкологической терапии и не исключает удаления пораженного органа.

Пролиферация, которая свидетельствует о патологии, служит сигналом, призывающим к немедленному лечению. В связи с этим пациенты с диагностированной у них пролиферацией, находятся под надзором врача. Завершив лечение основного заболевания, следует провести дополнительное исследование (биопсию или цитологический анализ), которое позволит оценить насколько эффективно прошло лечение и определить есть ли риск образования в будущем злокачественной опухоли.